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Abstract

As paleoceanographic archives, deep sea coral skeletons offer the potential for high temporal resolution and precise absolute
dating, but have not been fully investigated for geochemical reconstructions of past ocean conditions. Here we assess the utility of
skeletal P/Ca, Ba/Ca and U/Ca in the deep sea coral D. dianthus as proxies of dissolved phosphate (remineralized at shallow
depths), dissolved barium (trace element with silicate-type distribution) and carbonate ion concentrations, respectively. Mea-
surements of these proxies in globally distributed D. dianthus specimens show clear dependence on corresponding seawater prop-
erties. Linear regression fits of mean coral Element/Ca ratios against seawater properties yield the equations: P/Cacoral (lmol/
mol) = (0.6 ± 0.1) P/Casw(lmol/mol) – (23 ± 18), R2 = 0.6, n = 16 and Ba/Cacoral(lmol/mol) = (1.4 ± 0.3) Ba/Casw(lmol/
mol) + (0 ± 2), R2 = 0.6, n = 17; no significant relationship is observed between the residuals of each regression and seawater
temperature, salinity, pressure, pH or carbonate ion concentrations, suggesting that these variables were not significant second-
ary dependencies of these proxies. Four D. dianthus specimens growing at locations withOarag 6 0.6 displayed markedly depleted
P/Ca compared to the regression based on the remaining samples, a behavior attributed to an undersaturation effect. These corals
were excluded from the calibration. Coral U/Ca correlates with seawater carbonate ion: U/Cacoral(lmol/
mol) = (�0.016 ± 0.003) ½CO2�

3 � (lmol/kg) + (3.2 ± 0.3), R2 = 0.6, n = 17. The residuals of the U/Ca calibration are not signif-
icantly related to temperature, salinity, or pressure. Scatter about the linear calibration lines is attributed to imperfect spatial-
temporal matches between the selected globally distributed specimens and available water column chemical data, and potentially
to unresolved additional effects. The uncertainties of these initial proxy calibration regressions predict that dissolved phosphate
could be reconstructed to ±0.4 lmol/kg (for 1.3–1.9 lmol/kg phosphate), and dissolved Ba to ±19 nmol/kg (for 41–82 nmol/
kg Basw). Carbonate ion concentration derived from U/Ca has an uncertainty of ±31lmol/kg (for 60–120 lmol=kg CO2�

3 ).
The effect of microskeletal variability on P/Ca, Ba/Ca, and U/Ca was also assessed, with emphasis on centers of calcification,
Fe–Mn phases, and external contaminants. Overall, the results show strong potential for reconstructing aspects of water mass
mixing and biogeochemical processes in intermediate and deep waters using fossil deep-sea corals.
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1. INTRODUCTION

Tropical corals are widely used in paleoceanographic
reconstructions to provide high resolution records of
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climate variability. The absence of zooxanthellate corals be-
low the surface layer of the ocean is a limitation that could
be compensated by the presence of deep-sea corals, if suit-
able geochemical proxies in the skeletons of these organ-
isms were developed. Azooxanthellate deep corals are
globally distributed, and can be dated precisely with
U–Th radiometric techniques. Fossil deep sea corals of
appropriate age can thus be used to study the ocean’s role
in abrupt climate events including Heinrich events, the
Younger Dryas, the Medieval Warm Period, and the Little
Ice Age, if the range of useful proxies can be expanded.

The solitary coral Desmophyllum dianthus (D. dianthus)
is an aragonitic scleractinian, azooxanthellate coral, with
cosmopolitan geographic distribution, depth range of 35–
2500 m (Cairns, 1994), and exceptional thermal tolerance
of �1 �C to 28 �C (Stanley and Cairns, 1988). Because of
its century-long life span and relatively large skeleton
(�10 cm of vertical septal growth) (Cheng et al., 2000; Ad-
kins et al., 2004), D. dianthus allows for both U/Th and
radiocarbon dating (Cheng et al., 2000; Robinson et al.,
2005) in addition to multi-proxy studies on a single speci-
men, providing the potential for subdecadal resolution of
century scale windows into mesopelagic variability in the
past (Adkins et al., 1998). There is great incentive, then,
to develop new proxies that could provide high resolution
information related to water mass mixing ratios and to
the biogeochemical processes of nutrient supply and distri-
bution, primary production, and biogenic particulate car-
bon flux to the intermediate and deep ocean.

Foraminiferal proxies currently used to reveal aspects of
nutrient supply and utilization include d13C, Cd/Ca
(Keigwin and Boyle, 1989; Rosenthal et al., 1997), Ba/Ca
(Lea and Boyle, 1990), and d15N (Altabet and Curry,
1989). In tropical corals these biogeochemical processes
are explored using d13C, Ba/Ca (Lea et al., 1989; Tudhope
et al., 1996; Alibert and Kinsley, 2008), and Cd/Ca and P/
Ca (Shen et al., 1987; LaVigne et al., 2010). A P/Ca proxy
calibration was previously proposed for D. dianthus

(Montagna et al., 2006), suggesting that P/Ca in the skele-
ton is �7 times greater than P/Ca in ambient seawater.
Questioning the validity of this outcome led to further
research and resulted in the revised P/Ca calibration
presented in this paper.

The deep sea coral D. dianthus also holds promise for
reconstructing paleo-carbonate ion concentrations. Fora-
miniferal carbonate ion proxies, U/Ca in planktonics, and
Zn/Ca and B/Ca in benthics (Russell et al., 2004; Marchitto
et al., 2005; Yu and Elderfield, 2007), offer great promise
but lack the high resolution and precise dating potential
of D. dianthus. In tropical corals, the effect of carbonate
ion concentration on uranium incorporation has been
investigated but is difficult to distinguish against the stron-
ger influences of temperature and other variables (Min
et al., 1995; Shen and Dunbar, 1995). The limited tempera-
ture range of deep coral environments suggests that other
influences on U/Ca variations, including potentially car-
bonate ion concentration, may emerge, but this potential
has yet to be explored.

In this paper, we present evidence supporting three new
proxy calibrations in the deep-sea coral D. dianthus: (1) a
revised P/Ca proxy calibration for reconstructing seawater
phosphate, (2) a Ba/Ca proxy for tracing variations in the
silicate-type element Ba, and (3) a U/Ca proxy for carbon-
ate ion concentration. The results constitute completion of
the first steps required to greatly expand the potential utility
of D. dianthus as a geochemical paleoceanographic archive.
Further investigations will be required to fully quantify the
effects of secondary environmental variables (temperature,
salinity, pH, etc.) on the proposed proxies, through future
field studies in which hydrographic parameters are well con-
strained, and through culturing experiments.

2. MATERIALS AND METHODS

2.1. Sample preparation and analytical approach

Samples were obtained from the National Museum of
Natural History (Smithsonian Institution, Washington,
DC) and from Dr. E. Sikes (Rutgers University, New
Jersey, USA). The corals were treated with the ultrasonic-
cleaning protocol of Cheng et al. (2000), and then septa
were removed, cut longitudinally, mounted in epoxy and
prepared as polished thick sections (300 lm) to �1 lm
roughness ensuring a flat surface for maintaining laser
focus and signal stability. The thick sections were subse-
quently rinsed with isopropyl alcohol (99.9% purity) in an
ultrasonic bath for several seconds and dried with a soft
cloth. The sections were oriented along the growth axis,
to enable sampling of the fibrous (acicular) aragonite por-
tion of the septa, while visualizing the central band, septal
exterior, and bioeroded features, all within the �1 mm
width of a typical septum.

The samples were ablated using a 193 nm ArF excimer
laser (UP-193, New Wave Research Fremont, CA). Pure
He was used as the ablation atmosphere (Eggins et al.,
1998), and the output from the laser ablation cell was then
mixed with additional Ar before injection into the central
channel of the MS. The sample was ablated at a fluence
of �6–7 J/cm2 and 15 Hz shot frequency. Gas blanks were
measured initially for 45 s, while the laser beam was
blocked by a shutter. The shutter was then opened, and
the sample was ablated while the transient analyte signals
were acquired for the ablation period.

Our sampling strategy was to ablate lines along the
growth axis of the corals, integrating several years of
growth, to obtain mean elemental composition for the spec-
imen. Surface contamination, which in the case of our D.

dianthus thick sections originated most probably from sam-
ple sectioning and polishing, was removed with preablation
laser passes (Sinclair et al., 1998). Such contamination was
expected to be restricted to the upper few microns since
deep sea coral aragonite is dense and generally free of voids
(43Ca shows �10% signal intensity variation along an abla-
tion line). Therefore our approach was to perform preabla-
tion passes until averaged elemental ratios were
reproducible among successive ablations of the same line
(typically better than ±10%, see also Table A1). Typically
we found that one ablation of �6 lm depth was sufficient
to remove surface contamination in coral thick sections,
identified as a laser pass in which resultant data did not sat-
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isfy the reproducibility requirements stated above. Ablation
depth is estimated using a value of 1 lm per 10 shots, sim-
ilar to other laser systems (Günther et al., 2000; Hathorne
et al., 2003).

Analyses were carried out on an Element 2 SF–ICP–MS
(ThermoFinnigan, Bremen, Germany) using a combination
of magnet jumps and electrostatic peak scanning (E-scan).
All elements were analyzed in medium resolution
(MR = 4000 M/DM) to resolve molecular ion interferences
on phosphorus (e.g. NO+ and NOH+) and on iron (e.g.
ArO+ and CaO+), while acquiring time-resolved data in a
near-simultaneous manner. The isotopes measured and
the method parameters are listed in Table 1. For the se-
lected laser and ICP conditions (Tables 1 and 2), elemental
ratio precision of coral analyses in thick sections was typi-
cally <±3% (1SD) for Ba/Ca, <±5% (1SD) for U/Ca, and
<±6% (1SD) for P/Ca for 3–4 replicate ablations of the
same line, integrated to obtain mean El/Ca for each abla-
tion pass. The length of ablated line varied depending on
sample from 0.4 to 4.0 mm. The gas blank, in counts per
Table 1
SF–ICP–MS acquisition parameters.

Isotope Sample time (s) Detection mode

11B 0.010 Counting/analog
25Mg 0.003 Counting/analog
31P 0.010 Counting/analog
43Ca 0.003 Analog
55Mn 0.003 Counting/analog
56Fe 0.003 Counting/analog
136Ba 0.003 Counting/analog
238U 0.003 Counting/analog
Resolution m/Dm: 4000
Mass window: 40%
Search window: 10%
Integration window: 15%
Samples per peak: 40
Scan type: E-scan
Total duty cycle: 73%

Table 2
SF–ICP–MS and laser ablation parameters.

SF–ICP–MS Element 2 ThermoFinnigan,
Bremen, Germany

RF power 1250 W
Sample gas (Ar) 0.8–0.9 L min�1

Coolant gas flow 16 L min�1

Auxiliary gas flow 1.06 L min�1

Sampler, skimmer
cones

Ni

Laser ablation UP193HE New Wave Research, CA,
USA

Pulse width 20 ns
Energy 0.5–0.6 mJ
Fluence 6–7 J/cm�2

Laser repetition rate 15 Hz
Laser spot size 80–100 lm
Scan speed 15–25 lm/s�1

Carrier gas (He) 0.75 L min�1
second (cps), as a fraction of mean coral signal intensity
(cps), was <4% for P, <1% for Ba, and not detectable for
U, while Ca blank was <1% and Fe and Mn blanks,
depending on the sample, were typically <20%.

Standardization was achieved by bracketing each coral
ablation line with NIST 612 glass standard analyses
(�2 mm long scan), interpolating a linear mass-response
gradient between standards (Eggins and Shelley, 2002;
Hathorne et al., 2008). To correct for variations in ablation
yield and instrumental drift, element signals were normal-
ized to Ca as the internal standard (Longerich et al.,
1996b; Hathorne et al., 2003). We used spreadsheet soft-
ware for offline data reduction, which involved gas-blank
subtraction, normalization to 43Ca, removal of signal spikes
(rare: when present, El/Ca was at least a factor of 2 higher
than the maximum El/Ca ratios within the rest of the abla-
tion line) that probably represented contaminant particles
entering the plasma (Sinclair et al., 1998), and finally, stan-
dardization. The NIST 612 standard is considered homoge-
neous for Ba, Ca, P and U (Eggins and Shelley, 2002),
therefore published elemental concentrations were used
(Ba: 39.7 ppm and certified U: 37.4 ppm; Reed, 1992; Jo-
chum et al., 2005, Ca: 84690 ppm; Eggins, 2003, P:
39.9 ppm; LaVigne et al., 2008). The lack of appropriate
carbonate standards for this study led to the use of the
non-matrix matched glass standard. Any matrix dependent
elemental fractionation is, however, minimized for most ele-
ments when using 193 nm lasers, including Ba and U
(Longerich et al., 1996a; Guillong et al., 2003; Hathorne
et al., 2008). For P/Ca measurements, it has been shown
that analyses using solution SF–ICP–MS agree with
193 nm laser ablation SF–ICP–MS measurements in tropi-
cal corals for specific operational conditions (LaVigne
et al., 2008). To minimize mass load induced matrix effects
and laser induced fractionations, we selected laser and plas-
ma conditions similar to those of LaVigne et al. (2008)
(Table 2).

A sub-set of three corals (47413, 83583, 82065) was
analyzed using colorimetric techniques (Koroleff, 1983)
to quantify the contribution of inorganic phosphate to
the total P content of the coral. Subsamples of the septa
were removed and crushed, then dissolved in 0.8 N hydro-
chloric acid (trace metal grade). For the purpose of color
development, the final solution was diluted in distilled
water to a working pH of �1 (Anagnostou and Sherrell,
2008). This method quantifies the soluble reactive phos-
phorus fraction in solution, and includes monophosphates
but excludes organic phosphorus compounds and non-
reactive inorganic phosphates including pyro- and poly-
phosphates.
2.2. Data analysis

Deep-sea coral specimens were collected at locations
characterized by a range of seawater properties. Hydro-
graphic data were varyingly well constrained depending
on station locations from the current global ocean database
(WOCE, GEOSECS, and CLIVAR programs) as well as
from other published data. When necessary due to geo-
graphic coverage of water column data, seawater properties
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were extrapolated along isopycnals from available
hydrographic stations to coral collection sites (Tables A1
and A2). To quantify the uncertainty in seawater concen-
trations from potential spatial and temporal mismatch be-
tween the coral collection and the hydrographic station
selected, we compiled all available data from locations
within a range of latitude (5�) and longitude (35�) and with-
in 27 years of the selected primary hydrographic station for
each coral specimen (listed in Table A2). None of our corals
has been radiometrically dated, although they are thought
to have been collected alive since we observed residual dried
tissue on all corals but 94069 and 48739.

The calibration slopes, regression coefficients (R2),
y-intercepts and associated errors were calculated using
Type-2 geometric mean linear regression, otherwise known
as reduced major axis (Ricker, 1973; Bevington and
Robinson, 1992), as modified for Matlab by E. T. Peltzer
(for details, see http://www.mbari.org/staff/etp3/regress.
htm). The error envelopes were computed using the Matlab
toolbox CurveFit (2009) for linear regression.

3. MICROSKELETAL VARIABILITY

Before establishing a consistent procedure that generated
reproducible elemental ratios, different structural features
were analyzed in the deep sea coral D. dianthus. The phases
examined included the fibrous aragonite, centers of calcifica-
tion (COCs), Fe–Mn phases, and the exterior of the septa.
We developed data acceptance criteria for the elements of
interest and established best practices for measuring our
geochemical proxies in D. dianthus with laser ablation.

3.1. Effects of Fe–Mn phases on intra-skeletal elemental ratio

variations

It has been reported that Mn-rich phases can contain
trace element contaminants, compromising elemental ratio
reconstructions in foraminifera (Pena et al., 2008). In
Fig. 1. Transmitted light image of an S1 septum and two neighboring S2
(magnified image on the right). Central band (with COCs) in dotted outlin
crystals (solid outline). Lines with arrows on left image are examples of las
to explore elemental anomalies in that region. Scale bar in upper left rep
corals, such phases may be Fe–Mn oxide and hydroxide
inclusions, contaminant particles (e.g. particulate phospho-
rus), Fe biominerals (Konhauser, 1997), or carbonate mate-
rial precipitated during conditions of high particulate
organic matter flux and surface sediment suboxia, leading
to enrichment in Fe, Mn, and P in the local benthic neph-
eloid layer (Sherwood et al., 1987).

To investigate potential contamination by Fe–Mn
phases, lines were ablated on the surface of coral septa,
cut and cleaned as described above for thick sections
(Fig. 1). We observed apparent contaminant phases evi-
denced by local peaks in Fe/Ca and Mn/Ca, associated with
P/Ca signals elevated by at least a factor of 2 (Fig. 2), which
were typically removed with subsequent ablations of the
same area, suggesting that their dimensions in the ablation
z-axis were a few 10 s of lm. Especially for corals recovered
from suboxic waters, like D. dianthus specimen 84818
(12 lmol/kg oxygen; Table A2), proximity to sediment-
source dissolved Mn2+ could lead to precipitation of Mn
carbonates, with elemental composition distinct from that
of the carbonate hosts (Pena et al., 2005).

Taking advantage of the multi-element analytical ap-
proach in our study, we suggest that when Fe/Ca, Mn/Ca,
and P/Ca co-vary, and there is a P2-fold increase in Mn/
Ca and Fe/Ca compared to the mean along the rest of a coral
ablation line, discrete Fe–Mn phases enriched in P may be
present. These phases did not show anomalous enrichment
in Ba or U (Fig. 2). However, ablation of interior septal ara-
gonite accessible in thick sections, with preablation, allowed
us to avoid these septal surface phases, such that no P/Ca
data needed to be edited from our raw data set for association
with high Mn or Fe. This evidence justified use of septal thick
sections for the remainder of the study.

3.2. Variations in the central band and centers of calcification

Two discrete structures (Fig. 1) described in scleractin-
ian coral skeletons are the centers of calcification (COCs)
septa of a D. dianthus coral showing the internal banding pattern
e shows as dark color, in contrast to the region of fibrous aragonite
er ablation tracks analyzed. Ablation across the central band is used
resents 1 mm.
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Fig. 2. Elemental ratios for ablation of a 3.5 mm line along the
exterior of a D. dianthus septum. This coral has a distinct Fe–Mn
phase that is associated with factor of �3 increase in P/Ca ratios at
the center of ablation line. Symbols and thin lines represent raw
data, while bold lines represent 4-point moving averages. The top
panel shows Element/Ca normalized to the mean ratio for portions
of the ablation line outside the central Fe–Mn–P peak, to
emphasize the relative magnitude of the compositional anomaly.
For reference, U/Ca and Ba/Ca raw ratios are also shown.
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located in the central band, and clusters of fibrous crystals
radiating out from the centers (Ogilvie, 1896; Bryan and
Hill, 1941). The COCs are morphologically (Constantz,
1986; Cohen et al., 2001) and compositionally (e.g. Adkins
et al., 2003; Cuif et al., 2003; Meibom et al., 2006) distinct
from the surrounding aragonite. We attempted to map the
variability of elemental ratios across the central band of
coral 62309 by drilling 100 lm spots on either side of and
directly focused on central band material, for 4 regions
along the central band of a single septum (Fig. 3). The
behavior of Mg/Ca and U/Ca in the central band was in
general agreement with the findings of other studies,
displaying enrichment in Mg/Ca and depletion in U/Ca
(Sinclair et al., 2006; Gagnon et al., 2007). Although no
P/Ca anomalies in central band material were resolvable
against P/Ca ratios in non-COC portions of the ablated
areas, it was obvious that P/Ca was more variable in the
central band than in fibrous aragonite regions (error bars
in Fig. 3). Additionally, Ba/Ca was largely invariant across
the central band in contrast to recent observations in trop-
ical corals and artificially precipitated granular aragonite
aggregates (Holcomb et al., 2009). Our results demonstrate
clearly the importance of avoiding the central band if pre-
cise U/Ca and P/Ca measurements are to be made. The cri-
terion for data removal due to inadvertent ablation of
COCs in our study was that the data in the anomalous re-
gion displayed Mg/Ca >2-fold higher and U/Ca P2-fold
lower than the mean of the remaining ablation line. Editing
for the presence of COCs was required only for coral spec-
imens 19168 and 84820.

3.3. Ablation of thick sections versus exterior of septa

In preliminary experiments, we attempted to determine
accurate and consistent values for the proxy element ratios
by ablating the exterior surfaces of septa, seeing the advan-
tage of the simplified sample preparation and expected
avoidance of the central band by limiting ablation penetra-
tion depth, following the methods of Montagna et al.
(2006). We observed that this approach requires more
extensive and thus deeper preablation (>20 lm compared
to <10 lm for thick sections) to remove anomalous surface
phases.

The nature of these phases on the surfaces of septa is
likely complex and variable. We separate them into two cat-
egories; phases precipitated or included during the coral
polyp lifetime, and phases generated post mortem. Deep
sea corals are frequently located in waters undersaturated
with respect to aragonite, but the tissue layer protects the
skeleton against dissolution. In times of environmental
stress, however, corals may retract the polyp exposing the
exterior of the corallite to corrosive waters and therefore
to erosion and dissolution (Lazier et al., 1999), resulting
in anomalous minor element ratios caused by differential
leaching (Hendy et al., 2007). Endolithic borings could also
be filled with aragonitic or calcitic cements (Nothdurft
et al., 2007; Cusack et al., 2008). Post-mortem, dissolution,
boring, and infilling may continue, and early marine arago-
nite cement may precipitate on the skeletal surface, altering
the values of important geochemical proxies. Such cements
can be avoided by assuring that sampling does not intersect
the margins (e.g. external areas of septa and the coral wall)
or surfaces of internal structures (e.g. central band material
and borings) (Nothdurft et al., 2007; Perrin and Smith,
2007).

Preablation of the exterior of septa does not guarantee
the removal of altered material at the surface of the coral.
For example, following preablation, the analytical ablation
lines on the exterior surfaces frequently intersected regions
of elevated Mg/Ca and decreased U/Ca, indicating the
presence of COCs near the septal surface (e.g. Fig. 1), often
not visible with light microscopy. We concluded that al-
tered phases on the septal surface can be too irregular in
thickness and the presence of COCs too difficult to confirm,
to make exterior ablation a viable method for obtaining
precise and representative elemental data.

Given these potential problems with ablation of the
exterior of septa, we analyzed interior septal aragonite in
thick sections. Ablation lines were laid out within the



Fig. 3. Results of ablation of 100 lm spots within centers of calcification (COCs; white central band under reflected light) and in the fibrous
part of coral 62309, outside of the COCs, shown against a reflected light image of thick section of septum. In the areas where COCs are
present, Mg/Ca is elevated and U/Ca is decreased. The Ba/Ca is nearly invariant while P/Ca is highly variable within COCs. Error bars
represent SD of the mean of 4 spots drilled at different points along each side of and within the central band. Data points are positioned
relative to their respective scale bars, and do not reflect the positions of the ablation spots on the sample pictured.

Table 3
Examples of P/Ca, Ba/Ca, and U/Ca means from different ablation lines on the same and different septa. Uncertainties are SD among
replicates of the same ablation line.

P/Ca ± 1SD Ba/Ca ± 1SD U/Ca ± 1SD Replicates

Coral 19249: 1.5–2 mm lines at tips of different septa

Line 1 (lmol/mol) 118 ± 7 8.1 ± 0.8 2.1 ± 0.2 n = 3
Line 2 (lmol/mol) 118 ± 9 7.7 ± 0.3 2.0 ± 0.3 n = 3

Coral 62309: 4 mm parallel lines on S1 septum

Line 1 (lmol/mol) 27 8.4 1.5 n = 1
Line 2 (lmol/mol) 22 ± 3 8.3 ± 0.4 1.4 ± 0.1 n = 3

Coral 94069: lines on different corals from the same location

Coral 1 (lmol/mol) 65 ± 7 7.7 ± 0.4 1.65 ± 0.04 n = 6 (2 lines)
Coral 2 (lmol/mol) 61 ± 3 7.7 ± 0.2 1.76 ± 0.07 n = 6 (2 lines)
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fibrous aragonite regions of the polished sections, away
from central bands and the exterior of the septa, and along
the coral growth axis. The resultant mean elemental ratios
were highly reproducible in different areas of the fibrous re-
gions of a septum, and in neighboring septa of the same
individual (Table 3).

4. RESULTS AND DISCUSSION

4.1. The P/Ca nutrient proxy

To generate a global calibration of P/Ca against dis-
solved phosphate, we analyzed twenty corals from a num-
ber of geographic locations (Fig. 4) and depths, spanning
nearly the full oceanic range of seawater phosphate
(�0.5–3.0 lmol/kg). Among all hydrographic variables
considered, coral P/Ca is most strongly correlated with dis-
solved phosphate, evidenced by regression against hydro-
graphic data from nearby stations (Fig. 5a). The resultant
slope was 0.6 ± 0.1 (R2 = 0.6), and the y-intercept of
�23 lmol/mol is indistinguishable from zero within the
regression error envelope (Fig. 5a). Four samples were ex-
cluded from the calibration regression, for reasons stated
below.

Our measured P/Ca linear regression slope of 0.6 differs
markedly from the slope of �7 measured in a previous cal-
ibration of P/Ca in the same species (Montagna et al.,
2006). We suspect the discrepancy between our regression
slope and that of Montagna et al. (2006) is a product of
sampling approach. The authors acquired data by ablating
the exterior of the septa, rather than thick sections, pre-
ceded only by a peroxide cleaning step and �11 lm depth



Fig. 4. Locations of D. dianthus corals (closed circles) used to generate proxy calibrations (GeoMap).
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of preablation (assuming average laser ablation of 0.1 lm
per shot, see Methods above). As described above, how-
ever, ablation of the exterior of septa requires more vigor-
ous preablations to remove diagenetically altered
material, Fe-Mn phases and other contaminants.

Although a useful test would be to analyze the same cor-
als for Fe, we suspect that the strong co-variation that
Montagna et al. (2006) observed between Mn/Ca and P/
Ca in D. dianthus (R2 � 0.5, up to 0.8 along some ablation
paths) is an indication of presence of Fe–Mn phases and co-
occurring P. We only saw this correlation in corals with
anomalous Fe–Mn areas associated with high P, during
ablations of the exterior of septa (Fig. 2). We propose that
the 0.6 slope of our P/Ca proxy calibration represents more
closely the composition of the uncontaminated fibrous ara-
gonite, and that this material is only analytically accessible
in D. dianthus, within practical limitations, by microsam-
pling techniques on septal thick sections.

To investigate the sources of scatter in the P/Ca cali-
bration, we tested the correlation between linear regres-
sion residuals and candidate secondary variables. For
the corals used in the calibration we found no significant
correlation between P/Ca residuals and temperature,
salinity, pressure, pH or carbonate ion (all R2 < 0.3).
Since many hydrographic parameters in seawater co-vary,
however, (e.g. seawater phosphate correlated with pH)
this analysis of regression residuals needs verification
through culture studies in which environmental variables
can be isolated. Therefore dependence of P/Ca on both
seawater phosphate and other variables, while not specif-
ically observed in this study, could contribute to the scat-
ter in the P/Ca-regression.
The mechanism(s) of P incorporation in corals remain
poorly understood; hence the calibration we present is fun-
damentally empirical. In tropical coral skeletons, P has
been shown to be dominantly intra-crystalline in nature,
meaning it is distributed in or between individual aragonite
crystals (LaVigne et al., 2008). Because the D. dianthus cor-
al is less porous than tropical corals, we assume that after
preablation of thick sections, and accepting data that are
reproducible with depth of ablation, our analyzed P/Ca in
D. dianthus is also dominantly intra-crystalline.

Both inorganic and organic phosphorus are thought to
be present in coral aragonite (Dodge et al., 1984; Shotyk
et al., 1995; LaVigne et al., 2008). In support to this hypoth-
esis, our preliminary soluble reactive phosphorus (SRP;
Koroleff, 1983) analyses performed on three corals yielded
inorganic phosphorus concentrations at <10% of the total
coral phosphorus content. Intra-crystalline inorganic phos-
phorus could be the result of ionic substitution within the
coral aragonite or inclusion of discrete particulate phases
like hydroxylapatite (Macintyre et al., 2000) and iron-phos-
phates. Although we cannot exclude the possibility of
hydroxylapatite present in D. dianthus skeleton (though it
should dissolve and be analyzed as SRP), we can refute
the presence of iron-phosphate, because P/Ca is at least
an order of magnitude higher than Fe/Ca in our corals,
whereas Fe phosphates have a typical P/Fe ratio <0.12–
0.23 (Feely et al., 1994).

Similarly to tropical corals, deep sea scleractinian corals
contain up to 2.5% organic material (Cuif and Dauphin,
2004). Among the P rich organic material potentially pres-
ent within the coral skeleton are lipids, DNA remnants and
enzymes like alkaline phosphatase (Goreau et al., 1971).
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Recently, Farré et al. (2010) suggested that lipids are an
important component of organic matter in the skeleton of
deep sea scleractinia, dominated by phospholipids. To our
knowledge, there is no available quantification of total
lipids in the skeleton of deep sea scleractinian corals. Per-
forming a calculation similar to that in LaVigne et al.
(2008), assuming up to 0.03% lipids per total D. dianthus

skeletal material (Isa and Okazaki, 1987), and an average
phospholipid molecular weight of 800, phospholipids in
D. dianthus could contribute up to 39 lmol P per mol Ca.
This concentration is within the lower range of our corals,
suggesting that phospholipids may contribute a significant
portion of total skeletal P. We need specialized studies to
further examine the nature of phosphorus in coral skeleton
including synchrotron-XRF and NMR approaches. De-
spite the apparent organic nature of coral P/Ca, our results
indicate strongly that skeletal P concentrations are driven
by variations in seawater inorganic phosphorus.

We also examined the possible effect of sample location
on the scatter in the P/Ca calibration line. The coral speci-
mens used in this study were collected from the Southern
Ocean (poleward of 45�S), the N. Atlantic, the N. Pacific,
and Pacific upwelling regions (Gulf of Alaska, California
Coast, and Galapagos). We did not observe any location-
related bias in the P/Ca values, with the exception of the
four corals that were collected from upwelling regions, at
depths where ambient waters are undersaturated with re-
spect to aragonite (Xarag 6 0.6). The P/Ca values for these
corals deviated markedly below the calibration regression
defined by the remaining points and were not included in
the regression (square symbols in Fig. 5a). Although the
regression residuals excluding the four outlier points do
not correlate with any ambient seawater parameters, when
the upwelling corals are included in the sample set, the
regression residuals do show an overall correlation with
pH (R2 = 0.4).

We suspect that corals living in seawater that is under-
saturated with respect to aragonite are affected indirectly
by bulk seawater pH. Undersaturation can drive slower
net calcification rates, as observed for X < 0.8 in tropical
corals (Ries et al., 2010), due to the metabolic cost of
achieving required levels of calcifying fluid supersaturation
(Cohen et al., 2009). The mechanisms by which growth rate
might affect P/Ca are not understood. Predictions and
hypotheses are hindered at this point as the mechanism of
P incorporation is unknown; models for elemental incorpo-
ration in non-biogenic carbonate are not directly compara-
ble. Future studies in cultured corals could separately test
the effect of aragonite undersaturation on coral P/Ca, espe-
cially for D. dianthus, in an effort to explain the observed
offset in this study.
Fig. 5. Calibrations of P/Ca, Ba/Ca, and U/Ca proxies in D.

dianthus against seawater compositional variables. Uncertainties in
equations represent 1SD, and the error envelope (dotted lines) is
calculated from the 95% confidence interval. Error bars in y-axis
represent SD of replicate ablation lines on single and/or neighbor-
ing septa. For symbols without error bars, error is smaller than
symbol or single ablation lines were analyzed (Table A1). Error
bars in x-axis represent uncertainty (1SD) in relevant hydrographic
data. Closed squares are outliers not used in the calibration
regressions (see text).

3
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4.2. The Ba/Ca nutrient-type proxy

The Ba/Ca ratios for 18 specimens of D. dianthus, plot-
ted against available ambient Ba/CaSW data, yield a proxy
calibration over a wide range of Ba concentrations, with
small error bars and a y-intercept near zero (Fig. 5b). This
is the first systematic calibration of the Ba/Ca proxy in a
deep-sea coral. The D. dianthus Ba/Ca ratios are similar
to those previously reported for the same species (Montagna
et al., 2006), and the linear regression slope is 1.4 ± 0.3
(R2 = 0.6), comparable to that determined previously for
tropical corals and inorganic experiments for relevant
temperatures (Lea et al., 1989; Dietzel et al., 2004). Of the
corals analyzed, specimen 48470, located off the northern
region of the Bay of Biscay, was located furthest away from
a station with available Basw, and the isopycnal approach
we employed for deriving local Basw thus carries more
uncertainty. Indeed this sample plotted as a notable outlier
in the regression, and was thus excluded from the calibra-
tion (square symbol, Fig. 5b).

The mechanism by which barium is incorporated into bio-
genic carbonate has been suggested to involve ionic substitu-
tion for Ca2+, forming orthorhombic BaCO3 (witherite)
(Speer, 1983; Dietzel et al., 2004). We expected that Ba/Ca
in D. dianthus would have some degree of temperature depen-
dence based on the work of Lea et al. (1989). Plotting the Ba/
Ca calibration residuals against corresponding in situ temper-
ature, however, did not reveal a significant correlation
(R2 = 0.1). In support of this observation, Dietzel et al.
(2004) reported <10% variation in average distribution coeffi-
cient of Ba/Ca for inorganic aragonite precipitated over a
temperature range of 10–19 �C. Additionally, if we use the
equation suggested by Gaetani and Cohen (2006) for the
dependence of Ba/Ca on temperature (lnBa/Ca = 2507/T
�5.9), the range in Ba/Ca concentration describes a variation
of ±9.7% (SD) about the mean coral Ba/Ca for the range of
ambient temperatures for our corals (2–11 �C), which is small
compared to the dependence of coral Ba/Ca on seawater Ba
for this sample set, and is comparable to the 2SD reproduc-
ibility of the Ba/Ca measurements for D. dianthus coral sec-
tions (Table A1). It would be informative to compare our
coral Ba/Ca with inorganic aragonite precipitation experi-
ments carried out at appropriately low temperatures, but no
such study has been published, hence we suggest that the tem-
perature dependence of Ba/Ca is relatively insignificant com-
pared to Ba-driven variations for deep sea coral aragonite
precipitated at temperatures below 15 �C. Our regression of
the primary calibration offsets against ambient temperature
seems to suggest that indeed we are not able to discern any
temperature dependence in our data set. Similarly, we investi-
gated the dependence of Ba/Ca regression residuals on salin-
ity, potential pressure (McCorkle et al., 1995), pH, and
carbonate ion, but none was observed (R2 < 0.03 in all cases).
Finally, there was no consistently unique behavior for corals
from upwelling regimes as was found for the P/Ca calibration.

The Ba/Ca ratio therefore appears to be a relatively
uncomplicated proxy for dissolved barium. The scatter
around the calibration line is suspected to result primarily
from the uncertainty in hydrographic data for Basw, but
may also be affected by biological, growth rate, or regional
effects that we were not able to identify or quantify in this cal-
ibration work.

4.3. The U/Ca carbonate ion concentration proxy

Coral U/Ca (lmol/mol) is most strongly correlated with
ambient seawater carbonate ion concentration (lmol/kg),
among the hydrographic variables tested (temperature,
salinity, pressure, pH). This correlation is strongly negative
with a slope of �0.016 ± 0.003 and y-intercept of
3.2 ± 0.3 lmol/mol (Fig 5c, R2 = 0.6, n = 17). Carbonate
ion concentrations were calculated from other reported car-
bonate system parameters using CO2 sys.exe (Ver. 1.05; Le-
wis and Wallace, 1998; K1 and K2 were selected according
to Mehrbach et al. (1973) refit by Dickson and Millero
(1987)). The temperature, salinity, and pressure dependence
of U/Ca was found to be negligible in D. dianthus, evalu-
ated as above by plotting the residuals of individual sam-
ples in the carbonate ion linear regression against ambient
hydrographic properties (R2 < 0.2 in each case).

Since the aqueous chemistry of uranium is influenced by the
carbonate ion, which forms complexes with the uranyl ion
ðUO2þ

2 Þ (Langmuir, 1978), variations of U/Ca in tropical cor-
als are suspected to be related to changes in seawater carbonate
ion, but U/Ca is demonstrably correlated with temperature,
the dominant influence (Min et al., 1995; Shen and Dunbar,
1995). In ooid formations, U content has also been shown to
be inversely related to carbonate ion (Chung and Swart,
1990). Our results showed that D. dianthus U/Ca declined by
�58% for a 100 lmol/kg increase in carbonate ion, compara-
ble to the 32% mean decline for the same carbonate ion in-
crease observed in planktonic foraminifera cultures (Russell
et al., 2004) but offset to higher U/Ca ratios in D. dianthus. This
offset is expected since the ionic radius of UO2þ

2 is larger than
Ca2+ (Kitano and Oomori, 1971), and therefore the aragonite
lattice with its orthorhombic structure and non-planar CO2�

3

group would allow more freedom for large ion substitutions
than would calcite (De Villiers, 1971).

The scatter in our U/Ca carbonate ion calibration could
be attributed to a number of factors, similar to those dis-
cussed for the P and Ba proxies; diagenesis and sample het-
erogeneity are not expected to have a major influence on the
U/Ca calibration based on the sampling strategy followed.
Further studies are needed however to fully quantify poten-
tial dependence of coral U/Ca on other hydrographic vari-
ables, e.g. temperature, which could cause an uncertainty in
this calibration, although our hydrographic data did not
indicate such an effect. The age of the analyzed corals is
somewhat uncertain, adding potential error in the hydro-
graphic properties assumed to be characteristic of ambient
seawater conditions when the corals grew.

According to physicochemical models of coral calcifica-
tion, aragonite is precipitated from modified seawater within
an extracellular calcifying compartment, where carbonate
ion concentration is actively elevated above ambient concen-
trations, facilitating crystal nucleation and growth (Al-
Horani et al., 2003; Holcomb et al., 2009). Nevertheless, cal-
cification processes (e.g. calcification rate) could be sensitive
to variations in the saturation state of the external environ-
ment (Langdon et al., 2000; Cohen and McConnaughey,
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2003; Ries et al., 2010), with implications for elemental incor-
poration, U speciation, U adsorptive efficiency, and ulti-
mately coral U/Ca ratios. Potential routes by which
carbonate ion could affect U/Ca incorporation in the coral
aragonite are related to: (1) aqueous uranium speciation
and diffusion, (2) subsequent adsorption and desorption,
(3) ligand exchange reactions and rearrangement of ligand
coordination, and (4) processes within the solid (e.g. solid dif-
fusion and coordination changes; Russell et al., 2004 and ref-
erences therein). The inverse relationship between coral U/
Ca and carbonate ion could be a net result of several factors.

One of the processes affecting U/Ca in corals could be
inhibition of adsorption of uranyl complexes on mineral
and organic phases by high carbonate ion concentration be-
cause of competition for anion adsorption sites (Langmuir,
1978; Barnett et al., 2000). Additionally, assuming that D.

dianthus calcification rates increase with higher carbonate
ion concentrations similarly to tropical corals (Kleypas
et al., 1999; Schneider and Erez, 2006), the U/Ca calibration
implies that higher calcification rates suppress U
incorporation. Coral studies and inorganic aragonite precip-
itation experiments suggest that tris-carbonated uranyl spe-
cies are the dominant U form in aragonite (Swart and
Hubbard, 1982; Reeder et al., 2000). The precipitation stud-
ies of Reeder et al. (2000), however, were conducted at
Xarag = 15–28 and pH > 8, not realistic conditions for a coral
environment. The calcite precipitation experiments at lower
pH (Reeder et al., 2001), where mono- and bi-carbonate ura-
nyl complexes were also observed, could be more suitable for
revealing the uranyl complex structure within the coral skel-
eton. If coral aragonite incorporates these uranyl complexes,
the increasing coral U/Ca at lower carbonate ion concentra-
tions in our study could imply the additional incorporation of
mono and bi-carbonate uranyl complexes whose abundance
increases at lower pH. Therefore, while the mechanisms may
be complex and multiple, our result for D. dianthus is a simple
and empirical anticorrelation between U/Ca and bulk seawa-
ter carbonate ion concentration. As a next step, inorganic
aragonite precipitation experiments should be carried out
to evaluate the carbonate ion effect on U/Ca ratios indepen-
dent of vital effects and therefore to test the applicability of
this proxy to paleoreconstructions.

5. CONCLUSIONS

In this work, P/Ca in the deep-sea coral D. dianthus is
shown to be a linear function of seawater phosphate concen-
tration. Further, we demonstrate that a previously published
calibration of D. dianthus P/Ca is valid in concept but incor-
rect quantitatively (�10 times lower slope in our new results),
while corals growing at Xarag < 1 have unusually low P/Ca
relative to the main calibration regression. We also establish
linear relationships for D. dianthus between Ba/Ca and dis-
solved barium concentration, and U/Ca and carbonate ion
concentrations. These proxy calibrations do not display pri-
mary or secondary residual dependence on temperature,
salinity, or pressure. Additionally, P/Ca and Ba/Ca proxies
appear to be insensitive to carbonate ion and pH variations.

We propose the use of P/Ca and Ba/Ca in D. dianthus as
complementary nutrient proxies. Whereas phosphate is
regenerated mainly at thermocline depths, dissolved barium
profiles resemble those of silicate and alkalinity (Chan
et al., 1977; Ostlund et al., 1987) as particulate Ba is regen-
erated deeper in the water column (Bishop, 1988). As trac-
ers of water mass reorganizations in the past, reconstructed
Ba concentrations would be more sensitive to shifts in the
biogeochemical structure of deepwater, where the phos-
phate profile is relatively invariant, and phosphate would
have more sensitivity to changes in the structure of thermo-
cline and intermediate waters.

A carbonate ion proxy, measured in a regional set of
depth-age distributed D. dianthus skeletons, would allow di-
rect reconstruction of lysocline depth in the water column,
which when combined with other proxies could provide
clues to the importance of atmospheric CO2, weathering,
organic matter rain rate and burial, and carbonate dissolu-
tion on the relative position of carbonate saturation hori-
zon and carbonate compensation depth (Archer and
Maier-Reimer, 1994; Sigman et al., 1998).

The P/Ca, Ba/Ca, and U/Ca calibrations could be used
simultaneously with 14C and U–Th dating to derive ventila-
tion rates in the past from the mixing ratio of distinct end-
member water masses in regions with active mixing of
intermediate and deepwater sources, like the Atlantic and
Southern Oceans. Reconstruction of nutrient abundances
and carbonate ion distributions in regions where deep
advection is sluggish and nutrient regeneration is relatively
more important, like the deep North Pacific, could provide
clues about basin-scale variations in export production,
changes in whole-ocean nutrient inventory, and shifts in
carbonate system equilibria on geological timescales.

The calibrations reported here are based on a globally dis-
tributed set of corals, and the scatter around the linear rela-
tionships suggests caution in using these calibrations for
regional paleo-applications. Given the uncertainties in the
calibration regressions of these proposed proxies, seawater
phosphate can be reconstructed to ±0.4 lmol/kg (from 1.3
to 1.9 lmol/kg Psw), and seawater Ba to ±19 nmol/kg (from
41 to 82 nmol/kg Basw). Carbonate ion concentration de-
rived from U/Ca has an uncertainty of ±31 lmol/kg (from
60 to 120 lmol/kg CO2�

3 ). The calibrations presented here
provide a proof of concept and support the fundamental
dependencies of the P/Ca, Ba/Ca and U/Ca proxies in D.

dianthus on important biogeochemical variables for which
paleo-records are currently sparse or controversial.
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Table A1

Summary of information on coral location, coral chemical properties, and hydrographic parameters at each coral specimen location.

Coral
ID

Coral
depth
(m)

Date
coral
collection

Coral
Lat
(N)

Coral
Long
(W)

Coral data Dissolved Ba data

P/Ca
(±1SD)
(lmol/
mol)

Ba/Ca
(±1SD)
(lmol/
mol)

U/Ca (±1SD) (lmol/
mol)

Number of
averaged
lines
(replicate
ablations)

GEOSECS Sta (1972–1978) and
other stations*

Lat Long Depth
Hydrographic
data (m)

Basw

(nmol/
kg)

References

80358 358 1967 48 8 27.40 5.64
(0.03)

0.85 (0.01) 1 (1) for P/Ca, 1 (3)
for rest

23 60 17 400 44 Chan et al.
(1977)

48739 825 1973 48 7 63.37
(2.52)

6.29
(0.08)

1.64 (0.03) 1 (4) 23 60 17 886 47 Chan et al.
(1977)

48473 1115–
1100

1973 48 8 26.69
(2.22)

6.43
(0.34)

0.78 (0.05) 1 (4) 23 60 17 1095 47 Chan et al.
(1977)

48740 1470 1973 49 11 55.38
(2.18)

12.12
(0.17)

1.13 (0.07) 1 (3) Sta. 115 following 27.9 isopycnal
from A24 WOCE

28 26 1733 56 Ostlund et al.
(1987)

47407 549 1964 �55 130 114.46
(8.34)

10.40
(0.68)

0.93 (0.10) 3 (4) for Ba/Ca, 2
(4) for P/Ca, U/Ca

Sta. 322 following 27.1 rt, from
P17E WOCE interpolating
missing Ba

�43 130 804 54 Ostlund et al.
(1987)

47409 686–659 1966 �54 39 75.93
(6.70)

10.12
(0.10)

2.13 (0.08) 1 (3) 74 �55 50 730 83 Chan et al.
(1977)

84820 806 1986 0 92 47.75
(2.80)

12.58
(0.40)

2.01 (0.15) 2 (1) 331 along 27.5 rt �5 125 1168 100 Ostlund et al.
(1987)

19249 274 1889 34 120 117.57
(7.46)

7.87
(0.52)

2.04 (0.14) 1 (3) and 1 (4) 204 along 26.5 rt, interpolating
missing Ba (201 closest Sta.)

31 150 415 48 Ostlund et al.
(1987)

62309 613–430 1979 40 68 37.71
(10.13)

7.30
(0.27)

1.32 (0.08) 3 (3) 29 36 47 503 43 Chan et al.
(1977)

83583 488–440 1986 33 128 81.34 11.71 2.33 1 (1) 26.9 rt to station 204 (201 closest
Sta.)

31 150 624 68 Ostlund et al.
(1987)

47413 421 1964 �51 �168 78.29 8.92 1.79 1 (1) 24* �49 �145 400 48 Jacquet et al.
(2004)

84818 430–373 1986 0 90 64.69
(0.53)

18.65
(0.23)

3.00 (0.09) 1 (3)

94069 710 1993 �31 179 61.30
(2.53)

7.69
(0.18)

1.76 (0.07) 2 (3) 263 following 27 rt from the
closest 275 Sta.

�16 167 588 52 Ostlund et al.
(1987)

47408 713 �49 �165 97.38
(8.19)

8.77
(0.30)

1.46 (0.05) 1 (4)

80207 910–915 1967 �47 �148 105.16
(59.34)

11.25
(0.52)

1.35 (0.38) 2 (3) 33* �51 �143 902 69 Jacquet et al.
(2004)

19168 636 1888 �52 74 66.15
(4.88)

8.61
(0.05)

1.84 (0.05) 1 (3) 76 �58 66 646 78 Chan et al.
(1977)

78630 312 1982 47 131 38.10
(2.91)

7.86
(0.22)

2.00 (0.11) 2 (3) 204 along 26.8 rt interpolating
missing Ba (from P0l WOCE)

31 150 566 62 Ostlund et al.
(1987)

82065 567–604 1964 �55 130 67.85
(2.42)

12.91
(0.01)

1.77 (0.05) 1 (3) 51* �54 142 600 77 Jacquet et al.
(2004)

45669 494–384 1963 �56 66 101.62
(6.99)

8.48
(0.14)

1.43 (0.05) 1 (3) 76 �58 66 496 76 Chan et al.
(1977)

Z9725 276 1999 -45 �172 47.91
(1.27)

5.69
(0.27)

1.23 (0.06) 1 (3) 296 �45 �167 276 51 Ostlund et al.
(1987)
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Table A2
Continued summary from Table A1. Uncertainties in PO4-sw and CO2�

3 are SD of 2–8 nearby hydrographic stations (see text for details).

Coral
ID

Coral
depth
(m)

Date
coral
collection

Coral
Lat
(N)

Coral
Long
(W)

WOCE
Sta.

GEOSECS
Sta.

Transect
name

Date of
hydrographic
data

Depth
Hydrographic
data (m)

Lat Long Salinity
(psu)

Theta
(�C)

Oxygen
(lmol/
kg)

PO4-sw

(±1SD)
(lmol/
kg)

Alkalinity
(lmol/kg)

TC
(lmol/
kg)

pCO2

(latm)
CO2�

3

(±1SD)
(lmol/
kg)
CO2 sys

References

Seawater Parameters, excluding Ba

80358 358 1967 48 8 33 A24 1997 354 49 11 36 11 251 0.6
(0.1)

2336 2129 149 Talley, Lynne

48739 825 1973 48 7 32 A24 1997 808 49 12 36 10 196 1.1
(0.0)

2344 2172 126 Talley. Lynne

48473 1115–
1100

1973 48 8 32 A24 1997 1109 49 12 36 8 199 1.1
(0.0)

2348 2182 122 Talley, Lynne

48740 1470 1973 49 11 32 A24 1997 1509 49 12 35 5 243 1.2
(0.0)

2324 2169 112 Talley, Lynne

47407 549 1964 �55 130 141 P17E 1992 563 �54 126 34 6 275 1.6
(0.5)

2127 375 113 Swift, James

47409 686–
659

1966 �54 39 19 A16S 2005 651 �53 36 35 2 183 2.2
(0.0)

2347 2260 76 Wanninkhof,
Rik Doney,
Scott C.

84820 806 1986 0 92 373 P19C 1993 809 0 86 35 6 50 3.0
(0.1)

2301 1721 30 Talley, Lynne

19249 274 1889 34 120 171 P02 2004 287 30 124 34 8 120 2.0
(0.3)

2264 2196 68 (8) Swift, James

62309 613–
430

1979 40 68 73 A22 1997 500 40 66 35 6 201 1.4
(0.0)

2317 2179 105 Joyce,
Terrence M.

83583 488–
440

1986 33 128 165 P02 2004 464 30 128 34 42 2.8
(0.1)

2293 2284 44 (1) Swift, James

47413 421 1964 �51 �168 66 P15S 1996 373 �50 �170 34 6 277 1.5
(0.2)

2284 2124 117 Bullister,
John L.

84818 430–
373

1986 0 90 373 P19C 1993 387 0 86 35 10 12 2.7
(0.1)

2271 1717 36 Talley, Lynne

94069 710 1993 �31 179 191 P06W 2003 700 �31 �177 34 7 211 1.6
(0.2)

2284 2146 104 Fukasawa,
Masao

47408 713 �49 �165 27 P11A 1993 797 �49 �155 34 6 198 1.9
(0.2)

2150 Rintoul,
Stephen R.

80207 910–
915

1967 �47 �148 23 P11A 1993 1058 �47 �155 34 4 196 2.2
(0.2)

Rintoul,
Stephen R.

19168 636 1888 �52 74 260 P19C 1993 680 �52 88 34 5 249 1.9
(0.1)

2156 437 97 (1) Talley, Lynne

78630 312 1982 47 131 12 for
carbonate
params and
105 for rest

P15N for
carbonate
params and
P01 for rest

1994 for
P15N and
1985 for P01

336 (295 for
carbonate
parameters)

Sta.
12: 50
Sta.
105:
47

Sta. 12:
165
Sta.
105:
131

34 5 115 2.4
(0.1)

2326 2325 42 (5) Garrett, John
F. (P15N)
Talley, Lynne
(P01)

82065 567–
604

1964 �55 130 136 for
carbonate
params and
134 for rest

P17E 1992 560 (599 for
carbonate
parameters)

�53 Sta.
134:
130
Sta.
136:
128

34 7 274 1.4
(0.6)

2144 410 112 Swift, James

45669 494–
384

1963 �56 66 76 1972–1973 �58 66 34 2 214 2.3
(0.5)

Ostlund et al.
(1987)

Z9725 276 1999 �45 �172 77 P15S 1996 265 (330 for
carbonate
parameters)

�46 172 35 9 245 1.2
(0.1)

2288 2130 117 Bullister,
John L.
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